Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(18): 20101-20118, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737082

RESUMO

In vitro plant cultures have emerged as a viable source, holding auspicious reservoirs for medicinal applications. This study aims to delineate the antioxidant and hypoglycemic potential of phytosynthesized selenium nanoparticle (SeNP)- and light stress-mediated in vitro callus cultures of Caralluma tuberculata extract. The morphophysicochemical characteristics of biogenic SeNPs were assessed through a combination of analytical techniques, including UV-visible spectrophotometry, scanning electron microscopy, energy-dispersive X-rays, Fourier transform infrared spectrometry, and zeta potential spectroscopy. The antioxidative potential of the callus extract 200 and 800 µg/mL concentrations was assessed through various tests and exhibited pronounced scavenging potential in reducing power (26.29%), ABTS + scavenging (42.51%), hydrogen peroxide inhibition (37.26%), hydroxyl radical scavenging (40.23%), and phosphomolybdate (71.66%), respectively. To inspect the hypoglycemic capacity of the callus extract, various assays consistently demonstrated a dosage-dependent relationship, with higher concentrations of the callus extract exerting a potent inhibitory impact on the catalytic sites of the alpha-amylase (78.24%), alpha-glucosidase (71.55%), antisucrase (59.24%), and antilipase (74.26%) enzyme activities, glucose uptake by yeast cells at 5, 10, and 25 mmol/L glucose solution (72.18, 60.58 and 69.33%), and glucose adsorption capacity at 5, 10, and 25 mmol/L glucose solution (74.37, 83.55, and 86.49%), respectively. The findings of this study propose selenium NPs and light-stress-mediated in vitro callus cultures of C. tuberculata potentially operating as competitive inhibitors. The outcomes of the study were exceptional and hold promising implications for future medicinal applications.

2.
PLoS One ; 19(4): e0297764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598493

RESUMO

The commercial-scale production of Caralluma tuberculata faces significant challenges due to lower seed viability and sluggish rate of root growth in natural conditions. To overcome these obstacles, using phyto-mediated selenium nanomaterials as an in vitro rooting agent in plant in vitro cultures is a promising approach to facilitate rapid propagation and enhance the production of valuable therapeutic compounds. This study aimed to investigate the impact of phytosynthesized selenium nanoparticles (SeNPs) on the morphological growth attributes, physiological status, and secondary metabolite fabrication in in vitro propagated Caralluma tuberculata. The results demonstrated that a lower dose of SeNPs (100 µg/L) along with plant growth regulators (IBA 1 mg/L) had an affirmative effect on growth parameters and promoted earliest root initiation (4.6±0.98 days), highest rooting frequency (68.21±5.12%), number of roots (6.3±1.8), maximum fresh weight (710±6.01 mg) and dry weight (549.89±6.77 mg). However, higher levels of SeNPs (200 and 400 µg/L) in the growth media proved detrimental to growth and development. Further, stress caused by SeNPs at 100 µg/L along with PGRs (IBA 1 mg/L) produced a higher level of total chlorophyll contents (32.66± 4.36 µg/ml), while cultures exposed to 200 µg/L SeNPs alone exhibited the maximum amount of proline contents (10.5± 1.32 µg/ml). Interestingly, exposure to 400 µg/L SeNPs induced a stress response in the cultures, leading to increased levels of total phenolic content (3.4 ± 0.052), total flavonoid content (1.8 ± 0.034), and antioxidant activity 82 ± 4.8%). Furthermore, the combination of 100 µg/L SeNPs and plant growth regulators (1 mg/L IBA) led to accelerated enzymatic antioxidant activities, including superoxide dismutase (SOD = 4.4 ± 0.067 U/mg), peroxidase dismutase (POD = 3.3 ± 0.043 U/mg), catalase (CAT = 2.8 ± 0.048 U/mg), and ascorbate peroxidase (APx = 1.6 ± 0.082 U/mg). This is the first report that highlights the efficacy of SeNPs in culture media and presents a promising approach for the commercial propagation of C. tuberculata with a strong antioxidant defense system in vitro.


Assuntos
Apocynaceae , Nanopartículas , Selênio , Antioxidantes/metabolismo , Selênio/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo
3.
Heliyon ; 10(7): e27909, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571619

RESUMO

Sesame (Sesamum indicum) is abundant in a diverse range of lignans, including sesamin, and γ-tocopherol, constituting a cluster of bioactive phenolic compound used for food and medicinal purposes. Cardiovascular diseases remain a leading global health challenge, demanding vigilant prevention and innovative treatments. This study was carried out to evaluate the effect of plant mediated SeNPs on sesame metabolic profile and to screen and check the effect bioactive compounds against CVD via molecular drug docking technique. Three sesame germplasms TS-5, TH-6 and Till-18 were treated with varying concentrations (10, 20, 30, 40 and 50 ppm) of plant-mediated selenium nanoparticles (SeNPs). There were three groups of treatments group-1 got only seed pretreatments of SeNPs, Group-2 with only foliar applications of SeNPs and Group-3 with both seed pretreatments and foliar applications of SeNPs. It was found that plants treated with 40 ppm of SeNPS in group 3 exhibited the highest total phenolic and flavonoid content. Total phenolic content at T4 was highest for TS-5 (134%), TH-6 (132%), and Till-18 (112%). LCMS analysis revealed a total of 276 metabolites, with phenolics, flavonoids, and free fatty acids being most abundant. KEGG analysis indicated enrichment in free fatty acid and phenylalanine tryptophan pathways. ADMET analysis and virtual screening resulted in total of five metabolic compounds as a potential ligand against Hemoglobin beta subunit. Lowest binding energy was achieved by Delta-Tocopherol (-6.98) followed by Lactoflavin (-6.20) and Sesamin (-5.00). Lipinski rule of five revealed that all the compounds completely safe to be used as drug against CVD and specifically for HBB. It was concluded that bioactive compounds from sesame could be an alternative source of drug for CVD related problems and especially for HBB.

4.
ACS Omega ; 9(13): 15449-15462, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585053

RESUMO

Medicinal plant-based cerium oxide nanoparticles (CeO2NPs) possessed excellent antimicrobial properties against multiple strains of Gram-positive and Gram-negative bacteria. The CeO2NPs are popular because their electropositive charged surface causes oxidation of plasma membrane and facilitates the penetration of CeO2NPs inside the pathogen body. In the present research work, CeO2NPs stabilized with Mentha leaf extract; as a result, nanoparticles surface-bonded with various functional groups of phytochemicals which enhanced the therapeutic potential of CeO2NPs. The inhibition percentage of CeO2NPs was evaluated against eight pathogenic Gram-positive bacteria Staphylococcus aureus and Streptococcus epidermidis; Gram-negative bacteria Escherichia coli, Stenotrophomonas maltophilia, Comamonas sp., Halobacterium sp., and Klebsiella pneumoniae; and plant bacteria Xanthomonas sp. The antifungal properties of CeO2NPs were evaluated against three pathogenic fungal species Bipolaris sorokiniana, Aspergillus flavus, and Fusarium oxysporum via the streak plate method. The antimicrobial inhibitory activity of CeO2NPs was good to excellent. The current research work clearly shows that three different medicinal plants Mentha royleana, Mentha longifolia, and Mentha arvensis based CeO2NPs, variation in nanoparticle sizes, and surface-to-volume ratio of green CeO2NPs are three factors responsible to generate and provoke antimicrobial activities of CeO2NPs against human pathogenic bacteria and plant infecting fungi. The results show that CeO2NPs possessed good antimicrobial properties and are effective to use for pharmaceutical applications and as a food preservative because of low toxicity, organic coating, and acceptable antimicrobial properties. This study showed a rapid and well-organized method to prepare stable phytochemical-coated CeO2NPs with three different plants M. royleana, M. longifolia, and M. arvensis with remarkable antibacterial and antifungal characteristics.

5.
J Trace Elem Med Biol ; 83: 127411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387428

RESUMO

BACKGROUND: This research delves into the reproductive toxicology of zinc oxide nanoparticles (ZnO-NPs) in male Sprague Dawley rats. It specifically examines the repercussions of Zn accumulation in the testes, alterations in testosterone levels, and histopathological changes in the gonadal tissues. AIMS: The primary objective of this study is to elucidate the extent of reproductive toxicity induced by ZnO-NPs in male Sprague Dawley rats. The investigation aims to contribute to a deeper understanding of the potential endocrine and reproductive disruptions caused by ZnO-NPs exposure. METHODS: Characterization techniques including SEM-EDX and XRD affirmed the characteristic nature of ZnO-NPs. Twenty-five healthy post weaning rats (200-250 g) were intraperitoneally exposed to different concentrations of ZnO-NPs @ 10 or 20 or 30 mg/kg BW for 28 days on alternate days. RESULTS: Results showed significant dose dependent decline in the body weight and testicular somatic index of rats. It also showed significant dose dependent accumulation of Zn in testis with increasing dose of ZnO-NPs. Conversely, serum testosterone level and sperm count were reduced with increasing dose of ZnO-NPs. Histological results showed dose dependent abnormalities i.e., vacuolization, edema, hemorrhage, destruction of seminiferous tubules, loss of germ cells and necrosis in rat testis. CONCLUSION: The findings of this study clearly indicate that high doses of zinc oxide nanoparticles (ZnO-NPs) can adversely affect the structural integrity and functional efficacy of the male reproductive system. Given these results, it becomes crucial to implement stringent precautionary measures in the utilization of ZnO-NPs, particularly in cosmetics and other relevant sectors. Such measures are imperative to mitigate the toxicological impact of ZnO-NPs on the male reproductive system and potentially on other related physiological functions. This study underscores the need for regulatory vigilance and safety assessments in the application of nanotechnology to safeguard human health.


Assuntos
Nanopartículas , Óxido de Zinco , Humanos , Ratos , Masculino , Animais , Óxido de Zinco/toxicidade , Ratos Sprague-Dawley , Sêmen , Nanopartículas/toxicidade , Testosterona
6.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319072

RESUMO

In the present investigation, the role of GS-AgNPs treatment in wheat plants was carried out in reducing heat stress with the aim of facilitating scientists on this topic. The effect of GS-AgNPs against heat stress has rarely been deliberated in wheat plants, and only a few studies have been established earlier in this scenario. This work illustrated the effect of GS-AgNPs on the regulation of carbohydrates metabolism, SOD, proteins, crude fibers, and minerals changes in wheat plants. Data were analysed using PCA analysis, correlation parameters, and normal probability distribution in PAST 3 software. The results indicated that heat stress alone caused severe changes in carbohydrates metabolism, SOD, proteins, crude fibers, and minerals immediately so that plants could not recover without foreign stabilizers such as GS-AgNPs. The application of GS-AgNPs increases the flux of carbohydrates metabolism, SOD, and proteins, including HSPs, crude fibers, and minerals, in wheat plants to reduce the effect of heat stress. The 50 mg/l concentration of GS-AgNPs has shown an increase in carbohydrates metabolism and SOD activity, while crude fibres have shown a significant enhancement at 100 mg/l of GS-AgNPs. The crude and true proteins were also shown pronounced increase in treatment to a concentration of 50 mg/l of GS-AgNPs. GS-AgNPs stimulated HSP production; most importantly, smHSP production was observed in the present results with other HSPs in wheat plants treated with a 50 mg/l concentration of GS-AgNPs. The mineral distribution was also regulated by the respective treatment of GS-AgNPs, and the highest amounts of Ca, P and Fe were found to be highest in wheat under heat stress. In general, we computed the expected model based on GS-AgNPs on the genes/factors that respond to heat stress and their potential role in mitigating heat stress in wheat. In addition, we discussed the prospective signalling pathway triggered by GS-AgNPs in wheat against heat stress. In the future, this work might be helpful in distinguishing the genetic variation due to GS-AgNPs in promoting tolerance in wheat against heat stress.Communicated by Ramaswamy H. Sarma.

7.
Exp Parasitol ; 256: 108651, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944660

RESUMO

Infectious diseases such as malaria, dengue, and yellow fever are predominantly transmitted by insect vectors like Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus in tropical regions like India and Africa. In this study, we assessed the larvicidal activity of commonly found seaweeds, including Padina gymnospora, P. pavonica, Gracilaria crassa, Amphiroa fragilissima, and Spatoglossum marginatum, against these mosquito vectors. Our findings indicate that extracts from P. gymnospora Ethyl Acetate (PgEA), P. pavonica Hexane (PpH), and A. fragilissima Ethyl Acetate (AfEA) displayed the highest larval mortality rates for A. stephensi, with LC50 values of 10.51, 12.43, and 6.43 µg/mL, respectively. Additionally, the PgEA extract from P. gymnospora exhibited the highest mortality rate for A. aegypti, with an LC50 of 27.0 µg/mL, while the PgH extract from the same seaweed showed the highest mortality rate for C. quinquefasciatus, with an LC50 of 9.26 µg/mL. Phytochemical analysis of the seaweed extracts revealed the presence of 71 compounds in the solvent extracts. Fourier-transform infrared spectra of the selected seaweeds indicated the presence of functional groups such as alkanes, alcohols, and phenols. Gas chromatography-mass spectrometry analysis of the seaweeds identified major compounds, including hexadecanoic acid in PgEA, tetradecene (e)- in PpEA, octadecanoic acid in GcEA, and 7-hexadecene, (z)-, and trans-7-pentadecene in SmEA.


Assuntos
Aedes , Anopheles , Culex , Inseticidas , Alga Marinha , Animais , Inseticidas/análise , Larva , Alga Marinha/química , Phaeophyceae , Rodófitas/química
8.
Int J Biol Macromol ; 256(Pt 1): 128379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000583

RESUMO

Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.


Assuntos
Proteínas de Choque Térmico , Triticum , Proteínas de Choque Térmico/genética , Triticum/genética , Mudança Climática , Antioxidantes , Resposta ao Choque Térmico , Grão Comestível/genética
9.
Can J Infect Dis Med Microbiol ; 2023: 1860084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927532

RESUMO

Malaria, a highly perilous infectious disease, impacted approximately 230 million individuals globally in 2019. Mosquitoes, vectors of over 10% of worldwide diseases, pose a significant public health menace. The pressing need for novel antimalarial drugs arises due to the imminent threat faced by nearly 40% of the global population and the escalating resistance of parasites to current treatments. This study comprehensively addresses prevalent parasitic and viral illnesses transmitted by mosquitoes, leading to the annual symptomatic infections of 400 million individuals, placing 100 million at constant risk of contracting these diseases. Extensive investigations underscore the pivotal role of traditional plants as rich sources for pioneering pharmaceuticals. The latter half of this century witnessed the ascent of bioactive compounds within traditional medicine, laying the foundation for modern therapeutic breakthroughs. Herbal medicine, notably influential in underdeveloped or developing nations, remains an essential healthcare resource. Traditional Indian medical systems such as Ayurveda, Siddha, and Unani, with a history of successful outcomes, highlight the potential of these methodologies. Current scrutiny of Indian medicinal herbs reveals their promise as cutting-edge drug reservoirs. The propensity of plant-derived compounds to interact with biological receptors positions them as prime candidates for drug development. Yet, a comprehensive perspective is crucial. While this study underscores the promise of plant-based compounds as therapeutic agents against malaria and dengue fever, acknowledging the intricate complexities of drug development and the challenges therein are imperative. The journey from traditional remedies to contemporary medical applications is multifaceted and warrants prudent consideration. This research aspires to offer invaluable insights into the management of malaria and dengue fever. By unveiling plant-based compounds with potential antimalarial and antiviral properties, this study aims to contribute to disease control. In pursuit of this goal, a thorough understanding of the mechanistic foundations of traditional antimalarial and antidengue plants opens doors to novel therapeutic avenues.

10.
Front Plant Sci ; 14: 1253193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810387

RESUMO

Introduction: Caralluma tuberculata holds significant importance as a medicinal plant due to its abundance of bioactive metabolites, which offer a wide range of therapeutic potentials. However, the sustainable production of this plant is challenged by overexploitation, changes in natural conditions, slow growth rate, and inadequate biosynthesis of bioactive compounds in wild populations. Therefore, the current study was conducted to establish an in vitro based elicitation strategy (nano elicitors and light regimes) for the enhancement of biomass and production of secondary metabolites. Methods: Garlic clove extract was employed as a stabilizing, reducing, or capping agent in the green formulation of Selenium nanoparticles (SeNPs) and various physicochemical characterization analyses such as UV visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-Ray (EDX) Spectroscopy, fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) were performed. Furthermore, the effects of phytosynthesized SeNPs at various concentrations (0, 50, 100, 200, and 400 µg/L on callus proliferation and biosynthesis of medicinal metabolites under different light regimes were investigated. Results and discussion: Cultures grown on Murashige and Skoog (MS) media containing SeNPs (100 µg/L), in a dark environment for two weeks, and then transferred into normal light, accumulated maximum fresh weight (4,750 mg/L FW), phenolic contents (TPC: 3.91 mg/g DW), flavonoid content (TFC: 2.04 mg/g DW) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity (85%). Maximum superoxide dismutase (SOD: 4.36 U/mg) and peroxide dismutase activity (POD: 3.85 U/mg) were determined in those cultures exposed to SeNPs (100 µg/L) under complete dark conditions. While the callus cultures proliferate on media augmented with SeNPs (200 µg/L) and kept under dark conditions for two weeks and then shifted to normal light conditions exhibited the highest catalase (CAT: 3.25 U/mg) and ascorbate peroxidase (APx: 1.93 U/mg) activities. Furthermore, LC-ESI-MS/MS analysis confirmed the effects of SeNPs and light conditions that elicited the antidiabetic metabolites (cumarins, gallic acid, caffeic acid, ferulic acid, catechin, querctin and rutin). This protocol can be scaled up for the industrial production of plant biomass and pharmacologically potent metabolites using in vitro callus cultures of C. tuberculata.

11.
Molecules ; 28(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36903290

RESUMO

Citrus production is harmed worldwide by yellow dragon disease, also known as Huanglongbing (HLB), or citrus greening. As a result, it has negative effects and a significant impact on the agro-industrial sector. There is still no viable biocompatible treatment for Huanglongbing, despite enormous efforts to combat this disease and decrease its detrimental effects on citrus production. Nowadays, green-synthesized nanoparticles are gaining attention for their use in controlling various crop diseases. This research is the first scientific approach to examine the potential of phylogenic silver nanoparticles (AgNPs) to restore the health of Huanglongbing-diseased 'Kinnow' mandarin plants in a biocompatible manner. AgNPs were synthesized using Moringa oleifera as a reducing, capping, and stabilizing agent and characterized using different characterization techniques, i.e., UV-visible spectroscopy with a maximum average peak at 418 nm, scanning electron microscopy (SEM) with a size of 74 nm, and energy-dispersive spectroscopy (EDX), which confirmed the presence of silver ions along with different elements, and Fourier transform infrared spectroscopy served to confirm different functional groups of elements. Exogenously, AgNPs at various concentrations, i.e., 25, 50, 75, and 100 mgL-1, were applied against Huanglongbing-diseased plants to evaluate the physiological, biochemical, and fruit parameters. The findings of the current study revealed that 75 mgL-1 AgNPs were most effective in boosting the plants' physiological profiles, i.e., chl a, chl b, total chl, carotenoid content, MSI, and RWC up to 92.87%, 93.36%, 66.72%, 80.95%, 59.61%, and 79.55%, respectively; biochemical parameters, i.e., 75 mgL-1 concentration decreased the proline content by up to 40.98%, and increased the SSC, SOD, POD, CAT, TPC, and TFC content by 74.75%, 72.86%, 93.76%, 76.41%, 73.98%, and 92.85%, respectively; and fruit parameters, i.e., 75 mgL-1 concentration increased the average fruit weight, peel diameter, peel weight, juice weight, rag weight, juice pH, total soluble solids, and total sugarby up to 90.78%, 8.65%, 68.06%, 84.74%, 74.66%, 52.58%, 72.94%, and 69.69%, respectively. These findings enable us to develop the AgNP formulation as a potential citrus Huanglongbing disease management method.


Assuntos
Citrus , Nanopartículas Metálicas , Moringa oleifera , Antioxidantes/química , Prata/química , Nanopartículas Metálicas/química , Frutas/química , Moringa oleifera/química , Citrus/química
12.
Sci Rep ; 13(1): 4514, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934168

RESUMO

Plants provide humans with more than just food and shelter; they are also a major source of medications. The purpose of this research was to investigate the antioxidant and hypoglycemic potential of green synthesized CeONPs using Mentha royleana leaves extract. The morphological and physicochemical features of CeONPs were evaluated by UV-Visible spectrophotometry, Scanning Electron Microscopy, Energy Dispersive X-rays and Fourier-transform infrared spectrometry, Dynamic light scattering, Atomic Force Microscopy, Zeta Potential. The average size range of synthesized CeONPs diameter between 46 and 56 nm, crystalline in shape, with Polydispersity index value of 0.2 and subatomic particles mean diameter was 4.5-9.1 nm. The antioxidant capability of CeONPs was assessed using DPPH, ABTS+, hydrogen peroxide, hydroxyl radical scavenging, and reducing power tests. The hypoglycemic potential of CeONPs was investigated using alpha-amylase, alpha-glucosidase, glucose absorption by yeast cells, and antisucrase. The effective concentrations were 500 and 1000 µg/ml found good in suppressing radical species. To explore the hypoglycemic potential of CeONPs, alpha-amylase, alpha-glucosidase, glucose absorption by yeast cell, and antisucrase assays were performed. Glucose absorb by yeast cells assay was tested for three distinct glucose concentrations: 5 mmol/L, 10 mmol/L, and 25 mmol/L. Green synthesize CeONPs showed a dose-dependent response, higher concentrations of CeONPs imposed a stronger inhibitory impact on the catalytic site of enzymes. This study suggest that CeONPs could possibly binds to the charge carrying species and act as competitive inhibitor which slow down the enzyme substrate reaction and prevents enzymatic degradation. The study's findings were outstanding, which bodes well for future medicinal applications of CeONPs.


Assuntos
Cério , Nanopartículas Metálicas , alfa-Glucosidases , Antioxidantes/farmacologia , Cério/química , Glucose , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Saccharomyces cerevisiae
13.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770731

RESUMO

Bio-fortification is a new, viable, cost-effective, and long-term method of administering crucial minerals to a populace with limited exposure to diversified foods and other nutritional regimens. Nanotechnology entities aid in the improvement of traditional nutraceutical absorption, digestibility, and bio-availability. Nano-applications are employed in poultry systems utilizing readily accessible instruments and processes that have no negative impact on animal health and welfare. Nanotechnology is a sophisticated innovation in the realm of biomedical engineering that is used to diagnose and cure various poultry ailments. In the 21st century, zinc nanoparticles had received a lot of considerable interest due to their unusual features. ZnO NPs exhibit antibacterial properties; however, the qualities of nanoparticles (NPs) vary with their size and structure, rendering them adaptable to diverse uses. ZnO NPs have shown remarkable promise in bio-imaging and drug delivery due to their high bio-compatibility. The green synthesized nanoparticles have robust biological activities and are used in a variety of biological applications across industries. The current review also discusses the formulation and recent advancements of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their anti-cancerous activities, activities in wound healing, and drug delivery, followed by a detailed discussion of their mechanisms of action.


Assuntos
Nanopartículas Metálicas , Óxido de Zinco , Animais , Zinco , Óxido de Zinco/química , Nanopartículas Metálicas/química , Aves Domésticas , Extratos Vegetais/química , Antibacterianos/química
14.
ACS Omega ; 8(3): 3354-3366, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36713727

RESUMO

Vegetable oil consumption is expected to reach almost 200 billion kilograms by 2030 in the world and almost 2.97 million tons in Pakistan. A large quantity of edible oil is imported annually from other countries to fill the gap between local production and consumption. Compared to other edible oil crops such as soybean, rapeseed, peanut and olive, sesame has innately higher (55%) oil content, which makes it an excellent candidate to be considered to meet local edible oil production. Oil seed crops, especially sesame, are affected by various pathogens, which results in decreased oil production with low quality oil. Selenium nanoparticles (SeNPs) work synergistically, as it has antifungal activity along with improving plant growth. Different concentrations of SeNPs were used, on three different varieties of sesame (TS-5, TH-6, and Till-18). Plant growth and development were accelerated by SeNPs, which ultimately led to an increase in crop yield. Morphological parameters revealed that SeNPs resulted in a growth increase of 55.7% in root length, 48% increase in leaf number/plant, and 38% in stem diameter. Out of three sesame varieties, TS-5 seedlings treated with 40 mg/L SeNPs showed 96.7% germination and 53% SVI at 40 mg/L. Sesame varieties dramatically increased antioxidant capability using SeNPs, resulting in 147% increase in SOD and 140% increase in POD enzyme units in TH-6 and 76% elevation in CAT enzymes in TS-5 (mean ± S.E). GCMS analysis revealed that bioactive compound I, sesamin, sesamol, and tocopherol contents were increased along with enhanced production of different unsaturated fatty acids. Kegg pathway analysis and MSEA revealed that these compounds were mainly involved in biosynthesis of unsaturated fatty acids, suggesting that SeNPs have elicited the biosynthesis of unsaturated fatty acids such as oleic acid, linoleic acid, and α-linoleic acid. This study concluded that SeNPs (40 mg/L) have an excellent capability to be used for crop improvement along with better oil quality.

15.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500240

RESUMO

In this study, selenium nanoparticles (SeNPs) and cerium oxide nanoparticles (CeONPs) were synthesized by using the extract of Melia azedarach leaves, and Acorus calamusas rhizomes, respectively, and investigated for the biological and sustainable control of yellow, or stripe rust, disease in wheat. The green synthesized NPs were characterized by UV-Visible spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The SeNPs and CeONPs, with different concentrations (i.e., 10, 20, 30, and 40 mg/L), were exogenously applied to wheat infected with Puccinia striformis. SeNPs and CeONPs, at a concentration of 30 mg/L, were found to be the most suitable concentrations, which reduced the disease severity and enhanced the morphological (plant height, root length, shoot length, leaf length, and ear length), physiological (chlorophyll and membrane stability index), biochemical (proline, phenolics and flavonoids) and antioxidant (SOD and POD) parameters. The antioxidant activity of SeNPs and CeONPs was also measured. For this purpose, different concentrations (50, 100, 150, 200 and 400 ppm) of both SeNPs and CeONPs were used. The concentration of 400 ppm most promoted the DPPH, ABTS and reducing power activity of both SeNPs and CeONPs. This study is considered the first biocompatible approach to evaluate the potential of green synthesized SeNPs and CeONPs to improve the health of yellow, or stripe rust, infected wheat plants and to provide an effective management strategy to inhibit the growth of Puccinia striformis.


Assuntos
Basidiomycota , Nanopartículas , Selênio , Triticum , Selênio/farmacologia , Selênio/química , Nanopartículas/química , Antioxidantes/farmacologia , Antioxidantes/química
16.
Nanomaterials (Basel) ; 12(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36079932

RESUMO

Wheat is the most important staple food worldwide, but wheat cultivation faces challenges from high food demand. Fertilizers are already in use to cope with the demand; however, more unconventional techniques may be required to enhance the efficiency of wheat cultivation. Nanotechnology offers one potential technique for improving plant growth and production by providing stimulating agents to the crop. In this study, plant-derived Ag/ZnO nanomaterials were characterized using UV-Vis spectroscopy, SEM, EDX, FTIR, and XRD methods. Various concentrations of phytogenically synthesized Ag/ZnO nanomaterials (20, 40, 60, and 80 ppm) and nitrogen-based fertilizers (urea and ammonium sulphate 50 and 100 mg/L) were applied to wheat varieties (Galaxy-13 and Pak-13). The results obtained from this research showed that application of 60 ppm Ag/ZnO nanomaterials with nitrogenous fertilizers (50 and 100 mg/L) were more effective in improving biochemistry and increasing yield of wheat plants by reducing enzymatic and non-enzymatic antioxidants (proline content, soluble sugar content, malondialdehyde, total phenolic content, total flavonoid content, superoxide dismutase, peroxidase, and catalase); and significantly increasing the protein content, number of grains per pot, spike length, 100-grain weight, grain yield per pot, and harvest index of both wheat varieties, compared to untreated plants. These findings allow us to propose Ag/ZnO nanomaterial formulation as a promising growth- and productivity-improvement strategy for wheat cultivation.

17.
Biomed Res Int ; 2022: 9539908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164441

RESUMO

Currently, providing nutritious food to all people is one of the greatest challenges due to rapid human population growth. The global poultry industry is a part of the agrifood sector playing an essential role in food insecurity by providing nutritious meat and egg sources. However, limited meat production with less nutritional value is not fulfilling the higher market demands worldwide. Researchers are focusing on nanobiotechnology by employing phytosynthesized mineral nanomaterials to improve the growth performance and nutritional status of broilers as these mineral nanoparticles are usually absorbed in greater amounts from the gastrointestinal tract and exert enhanced biological effects in the target tissues of animals with greater tissue accumulation. These mineral nanoparticles are efficiently absorbed through the gastrointestinal tract and reach essential organs via blood. As a result, it enhances growth performance and nutritional value with less toxicity and tremendous bioavailability properties. In this review, the research work conducted in the recent past, on the different aspects of nanotechnology including supplementation of mineral nanoparticle in diet and their potential role in the poultry industry, has been concisely discussed.


Assuntos
Nanopartículas , Aves Domésticas , Animais , Galinhas , Humanos , Carne , Minerais
18.
Molecules ; 27(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35807519

RESUMO

In this study, we evaluated bioinspired titanium dioxide nanoparticles (TiO2 NPs) that elicited biochemical and proteome modifications in wheat plants under the biotic stress caused by Puccinia striiformis f. sp. tritici (Pst). Biosynthesis of TiO2 NPs was confirmed using UV-Vis spectrophotometry, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. We found that the nanoparticles with crystalline nature were smaller than 100 nm. The results of FTIR analysis showed the presence of potential functional groups exhibiting O-H, N-H, C-C, and Ti-O stretching. The TiO2 NPs of different concentrations (20, 40, 60, and 80 mg L-1) were exogenously applied to wheat plants under the biotic stress caused by Pst, which is responsible for yellow stripe rust disease. The results of the assessment of disease incidence and percent disease index displayed time- and dose-dependent responses. The 40 mg L-1 TiO2 NPs were the most effective in decreasing disease severity. The bioinspired TiO2 NPs were also evaluated for enzymatic (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), and nonenzymatic metabolites (total proline, phenolic, and flavonoid contents) in wheat plants under stripe rust stress. The 40 mg L-1 TiO2 NPs were effective in eliciting biochemical modifications to reduce biotic stress. We further evaluated the effects of TiO2 NPs through gel- and label-free liquid chromatography-mass spectrometry (LC-MS) proteome analysis. We performed proteome analysis of infected wheat leaves and leaves treated with 40 mg L-1 TiO2 NPs under stripe rust stress. The functional classification of the proteins showed downregulation of proteins related to protein and carbohydrate metabolism, as well as of photosynthesis in plants under biotic stress. An upregulation of stress-related proteins was observed, including the defense mechanisms and primary metabolic pathways in plants treated with 40 mg L-1 TiO2 NPs under stress. The experimental results showed the potential of applying biogenic TiO2 NPs to combat fungal diseases of wheat plants and provided insight into the protein expression of plants in response to biotic stress.


Assuntos
Basidiomycota , Nanopartículas , Doenças das Plantas/microbiologia , Proteoma , Puccinia , Estresse Fisiológico , Titânio , Triticum/microbiologia
19.
Nanomaterials (Basel) ; 12(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745455

RESUMO

Green synthesized cerium oxide nanoparticles (GS-CeO2 NPs) have a unique size, shape, and biofunctional properties and are decorated with potential biocompatible agents to perform various therapeutic actions, such as antimicrobial, anticancer, antidiabetic, and antioxidant effects and drug delivery, by acquiring various mechanistic approaches at the molecular level. In this review article, we provide a detailed overview of some of these critical mechanisms, including DNA fragmentation, disruption of the electron transport chain, degradation of chromosomal assemblage, mitochondrial damage, inhibition of ATP synthase activity, inhibition of enzyme catalytic sites, disorganization, disruption, and lipid peroxidation of the cell membrane, and inhibition of various cellular pathways. This review article also provides up-to-date information about the future applications of GS-CeONPs to make breakthroughs in medical sectors for the advancement and precision of medicine and to effectively inform the disease diagnosis and treatment strategies.

20.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684312

RESUMO

Currently, the growth and yield of crops are restrained due to an increase in the occurrence of ecological stresses globally. Biogenic generation of nanomaterials is an important step in the development of environmentally friendly procedures in the nanotechnology field. Silver-based nanomaterials are significant because of their physical, chemical, and biological features along with their plentiful applications. In addition to useful microbes, the green synthesized Ag nanomaterials are considered to be an ecologically friendly and environmentally biocompatible method for the enhancement of crop yield by easing stresses. In the recent decade, due to regular droughts, infrequent precipitation, salinity, and increased temperature, the climate alternation has changed certain ecological systems. As a result of these environmental changes, crop yield has decreased worldwide. The role of biogenic Ag nanomaterials in enhancing methylglyoxal detoxification, antioxidant defense mechanisms, and generating tolerance to stresses-induced ROS injury has been methodically explained in plants over the past ten years. However, certain studies regarding stress tolerance and metal-based nanomaterials have been directed, but the particulars of silver nanomaterials arbitrated stresses tolerance have not been well-reviewed. Henceforth, there is a need to have a good understanding of plant responses during stressful conditions and to practice the combined literature to enhance tolerance for crops by utilization of Ag nanoparticles. This review article illustrates the mechanistic approach that biogenic Ag nanomaterials in plants adopt to alleviate stresses. Moreover, we have appraised the most significant activities by exogenous use of Ag nanomaterials for improving plant tolerance to salt, low and high temperature, and drought stresses.


Assuntos
Nanopartículas Metálicas , Prata , Produtos Agrícolas , Secas , Salinidade , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...